The Role of Mutation in the Optimisation of Numeric Functions by Genetic Algorithms
نویسندگان
چکیده
Normally in Genetic Algorithms, mutation is considered a background operator and the genes are considered to be the binary bits of the chromosome. In this paper we take a di erent viewpoint. We treat the variables of numerical functions as the genes, and consider the mutation of these genes. We also investigate the role of mutation as an independent reproduction operator. Our results show the value of this view, and explain some previous comparisons with Evolutionary Strategies.
منابع مشابه
Solving the Ride-Sharing Problem with Non-Homogeneous Vehicles by Using an Improved Genetic Algorithm with Innovative Mutation Operators and Local Search Methods
An increase in the number of vehicles in cities leads to several problems, including air pollution, noise pollution, and congestion. To overcome these problems, we need to use new urban management methods, such as using intelligent transportation systems like ride-sharing systems. The purpose of this study is to create and implement an improved genetic algorithms model for ride-sharing with non...
متن کاملOptimisation of assembly scheduling in VCIM systems using genetic algorithm
Assembly plays an important role in any production system as it constitutes a significant portion of the lead time and cost of a product. Virtual computer-integrated manufacturing (VCIM) system is a modern production system being conceptually developed to extend the application of traditional computer-integrated manufacturing (CIM) system to global level. Assembly scheduling in VCIM systems is ...
متن کاملSolving random inverse heat conduction problems using PSO and genetic algorithms
The main purpose of this paper is to solve an inverse random differential equation problem using evolutionary algorithms. Particle Swarm Algorithm and Genetic Algorithm are two algorithms that are used in this paper. In this paper, we solve the inverse problem by solving the inverse random differential equation using Crank-Nicholson's method. Then, using the particle swarm optimization algorith...
متن کاملAERO-THERMODYNAMIC OPTIMIZATION OF TURBOPROP ENGINES USING MULTI-OBJECTIVE GENETIC ALGORITHMS
In this paper multi-objective genetic algorithms were employed for Pareto approach optimization of turboprop engines. The considered objective functions are used to maximize the specific thrust, propulsive efficiency, thermal efficiency, propeller efficiency and minimize the thrust specific fuel consumption. These objectives are usually conflicting with each other. The design variables consist ...
متن کاملTHE EFFECTS OF INITIAL SAMPLING AND PENALTY FUNCTIONS IN OPTIMAL DESIGN OF TRUSSES USING METAHEURISTIC ALGORITHMS
Although Genetic algorithm (GA), Ant colony (AC) and Particle swarm optimization algorithm (PSO) have already been extended to various types of engineering problems, the effects of initial sampling beside constraints in the efficiency of algorithms, is still an interesting field. In this paper we show that, initial sampling with a special series of constraints play an important role in the conv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007